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Statistical mechanics of the self-gravitating gas with two or more kinds of particles

H. J. de Vega and J. A. Siebert
Laboratoire de Physique et Hautes Energies, Universite´ Paris VI, Tour 16, 1er e´tage, 4 Place Jussieu,

75252 Paris Cedex 05, France
~Received 30 November 2001; published 19 July 2002!

We study the statistical mechanics of the self-gravitating gas at thermal equilibrium with two kinds of
particles. We start from the partition function in the canonical ensemble, which we express as a functional
integral over the densities of the two kinds of particles for a large number of particles. The system is shown to
possess an infinite volume limit when (N1 ,N2 ,V)→`, keepingN1 /V1/3 andN2 /V1/3 fixed. The saddle point
approximation becomes here exact for (N1 ,N2 ,V)→`. It provides a nonlinear differential equation for the
densities of each kind of particle. For the spherically symmetric case, we compute the densities as functions of
two dimensionless physical parameters:h15Gm1

2N1 /V1/3T and h25Gm2
2N2 /V1/3T ~where G is Newton’s

constant,m1 andm2 the masses of the two kinds of particles, andT the temperature!. According to the values
of h1 andh2 the system can be either in a gaseous phase or in a highly condensed phase. The gaseous phase
is stable forh1 andh2 between the origin and their collapse values. We have thus generalized the well-known
isothermal sphere for two kinds of particles. The gas is inhomogeneous and the massM (R) inside a sphere of
radiusR scales withR asM (R)}Rd suggesting a fractal structure. The value ofd depends in general onh1 and
h2 except on the critical line for the canonical ensemble in the (h1 ,h2) plane where it takes the universal value
d.1.6 for all values ofN1 /N2. The equation of state is computed. It is found to be locally a perfect gas
equation of state. The thermodynamic functions~free energy, energy, entropy! are expressed and plotted as
functions of h1 and h2. They exhibit a square root Riemann sheet with the branch points on the critical
canonical line. The behavior of the energy and the specific heat at the critical line is computed. This treatment
is further generalized to the self-gravitating gas withn types of particles.

DOI: 10.1103/PhysRevE.66.016112 PACS number~s!: 05.20.2y, 04.40.2b, 64.60.2i, 95.30.Sf
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I. INTRODUCTION

The self-gravitating gases have remarkable physical p
erties due to the long-range nature of the gravitational fo
They are not homogeneous even at thermal equilibrium. T
fundamental inhomogeneity character suggested that fra
structures can arise in a self-interacting gravitational
@1,2,4#.

Self-gravitating gases are used to describe cold cloud
the interstellar medium as well as the large scale structur
galaxies. In both cases, self-gravitating gases provide sca
laws for the mass distribution with Haussdorf dimensio
compatible with the observations@1,2,4#.

All particles have the same mass in the self-gravitat
gases in thermal equilibrium considered till now both in t
hydrostatic approach@3# and in the statistical mechanics a
proach@4#. We study in the present paper the statistical m
chanics of a nonrelativistic gas with two kinds of particl
with massesm1 and m2. Such a system, besides its ow
physical interest, has obvious astrophysical motivations s
cold clouds in the galaxy are formed typically by seve
kinds of particles, for example, hydrogen and helium.

Let us begin by briefly recalling some results about
statistical mechanics of the self-gravitating gas with one k
of particle @4#. It is a gas ofN nonrelativistic particles of
massm interacting through Newtonian gravity. The gas is
a volumeV and in a thermal bath at temperatureT. In the
usual thermodynamic limit (N,V→` andN/V is fixed! the
gaseous phase is not stable and the system collapses in a
dense phase. In the dilute limitN,V→` andN/V1/3 fixed the
system can exist in the gaseous phase. This is a dilute
1063-651X/2002/66~1!/016112~14!/$20.00 66 0161
p-
e.
is
tal
s

in
of
ng
s

g

-

ce
l

e
d

ery

it

since the average densityN/V goes asV22/3→0. The rel-
evant physical parameter of the system ish5Gm2N/LT
with Newton’s constantG and the lengthL[V1/3. h is the
ratio of the characteristic gravitational energyGm2N/L and
the kinetic energyT of the gas. Forh50 the ideal gas is
recovered. Fromh50 till a critical valueh052.434 50 . . .
the gaseous phase is stable in the canonical ensemble. W
h reaches the valueh0 the gas collapses in a very den
phase. The velocity of sound becomes imaginary at this p
triggering unstabilities that lead to the collapse of the gas@4#.
The saddle point approximation applies betweenh50 and
the pointhC52.517 551 . . . ~associated to the Jeans inst
bility ! where the determinant of small fluctuations is po
tive. At hC the determinant of small fluctuations vanish
and the saddle point approximation breaks down@4#. Beyond
hC the gaseous phase is stable and the mean-field app
mation holds in the microcanonical ensemble. Solving
saddle point equation in the spherically symmetric case
lows us to obtain the particle density and the thermodyna
functions as functions of the physical parameterh. As shown
in Ref. @4# the mean-field approach is equivalent to the h
drostatic description@3# provided the ideal gas equation o
state is postulated in the latter approach. The mass distr
tion turns to exhibit a scaling behavior as a function ofR @4#.

We consider in this paper the self-gravitating gas with t
kinds of particles in the canonical ensemble. We recast
partition function as a functional integral over the densit
of particles of each kind when the number of particles
large. The statistical weight for each configuration of den
ties turns to be the exponential of an ‘‘effective action
which is proportional to the number of particles. Therefo
©2002 The American Physical Society12-1
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we can use the saddle point approximation in the thermo
namic limit to evaluate the partition function. The effectiv
action turns to be the free energy as a function of the part
densities.

When the saddle point provides a minimum of the fr
energy, the density solution of the saddle point equation
the most probable. It is certainly exact for an infinite numb
of particles, since the minimized free energy exponentia
dominates the partition function. That is, the mean-fi
theory defined by the saddle point becomes exact for an
finite number of particles. The mean-field approximation
the canonical ensemble ceases to be valid on a critical lin
the (h1 ,h2) plane~see below!. Beyond this critical line the
saddle point is not a minimum of the free energy and it fa
to reproduce the physics of the system.

More precisely, we considerN1 particles of massm1 and
N2 particles of massm2 interacting through Newtonian grav
ity in a volumeV and in a thermal equilibrium at temperatu
T. By analogy with the self-gravitating gas with one kind
particle, we consider the dilute thermodynamic limit:

N1 ,N2 ,V→`, keeping
N1

V1/3
and

N2

V1/3
fixed.

~1!

The two relevant physical parameters here are

h15
Gm1

2N1

LT
, h25

Gm2
2N2

LT
, ~2!

whereL[V1/3 for a cubic geometry. Notice that Eq.~1! im-
plies that the ratioN1 /N2 stays fixed forN1 ,N2 ,V→`.

The self-gravitating gas with two kinds of particles b
haves as a perfect gas in the extremely diluted limith1→0
and h2→0. When h1 and/or h2 grow, the gas become
denser till it collapses into a very dense phase whenh1 and
h2 reach the collapse line for the canonical ensemble in
(h1 ,h2) plane. By analogy with the gas with one kind
particle @4# we expect the collapse line to be very close a
below the critical line in the (h1 ,h2) plane. The gaseou
phase keeps stable in the microcanonical ensemble be
this critical line.

We find here that the saddle point equations are
coupled nonlinear differential equations for the densities
the two kinds of particles:r1(x),r2(x). We succeed to re
duce these equations to a single nonlinear differential eq
tion. We solve it in the spherically symmetric case. We e
press the densities as functions of the physical parameterh1
andh2. We thus find the isothermal sphere with two types
particles.

We compute the mass inside a sphere of radiusR centered
at the origin and show that it scales with a Haussdorf dim
sion d. d decreases withh1

R andh2
R from the valued53 for

the ideal homogeneous gas tilld'1.6 in the canonical criti-
cal line. The Haussdorf dimension keeps decreasing bey
the canonical critical line in the stable phase of the micro
nonical ensemble.d at the canonical critical line turns to b
independent of the ratioh1

R/h2
R and coincides within the nu

merical precision withd'1.6 for the canonical critical poin
01611
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of the gas with one kind of particle@4#. This indicates that
the Haussdorf dimension at the canonical critical line is
universal value, independent of the gas composition.

The dependence of the critical values of the parame
h1 andh2 with the ratioN1/N2 is computed. The thermody
namic functions~free energy, energy, entropy, local pressu
and pressure contrast! are expressed as functions of th
physical parameterh1 and h2. The pressure contrast@ratio
between the pressure at the origin and the pressure a
boundary# turns to be lower for this mixture of particles tha
for the gas with one kind of particle.

We compute the pressure at a pointr of the gas and show
that it locally obeys the equation of state of an ideal gas

P~r !5
N1T

V
r1~r !1

N2T

V
r2~r !. ~3!

Since the gas is inhomogeneous, the pressure acting on
noninfinitesimal volume of the gas does not obey the id
equation of state.~This was already the case for a gas w
all particles of equal mass@4#.! We plot in Figs. 3–5 the
pressure of the gas at the surface.

The mean-field equations have a straightforward hyd
static interpretation. We show that the mean-field equati
derived from the partition function are equivalent to the h
drostatic equilibrium equations provided that the ideal eq
tion of state is postulated in the latter approach. We str
that we give here a microscopic derivation of the equation
state~3! from the partition function.

We then consider a self-gravitating gas formed byn kinds
of particles with different masses. The mean-field equati
are derived and shown to reduce to a single nonlinear dif
ential equation.

This paper is organized as follows, In Sec. II we pres
the statistical mechanics of the self-gravitating gas with t
kinds of particles in the canonical ensemble, in Sec. III
present the main thermodynamic magnitudes, the equatio
state and the scaling behavior of the particle distribution
spherical symmetry. In Sec. IV we present the generaliza
for n kinds of particles. The appendixes contain releva
mathematical developments and the hydrostatic approac
a self-gravitating gas with two kinds of particles.

II. STATISTICAL MECHANICS AND MEAN-FIELD
THEORY FOR THE SELF-GRAVITATING GAS

We present here the partition function for the se
gravitating gas withN1 particles of massm1 andN2 particles
of massm2 inside a finite volumeV and derive the mean
field approach to it.

A. The canonical ensemble

We study the statistical mechanics of the self-gravitat
gas with two kinds of particles in the canonical ensemb
The Hamiltonian of the system is
2-2
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H5(
i 51

N1 p1,i
2

2m1
1(

i 51

N2 p2,i
2

2m2
2 (

1< i , j <N1

Gm1
2

uq1,i2q1,ju

2 (
1< i , j <N2

Gm2
2

uq2,i2q2,ju
2 (

1< i<N1,1< j <N2

Gm1m2

uq1,i2q2,ju
.

Here,p1,i andq1,i are the momenta and the coordinates of
particles of massm1 . p2,i andq2,i are the momenta and th
coordinates of the particles of massm2. Therefore, the clas
sical partition function of the gas is

Z~T,N1 ,N2 ,V!5
1

N1!N2! E •••E )
l 51

l 5N1 d3p1,ld
3q1,l

~2p!3

3 )
l 51

l 5N2 d3p2,ld
3q2,l

~2p!3
e2H/T.

It is convenient to introduce the dimensionless coordina
variablesr 1,l5Lq1,l and r 2,l5Lq2,l . The momenta integrals
are computed straightforwardly. Hence the partition funct
becomes the product of the partition functions of perf
gases with massesm1 and m2 times the coordinate integra
Zint .

Z5
VN1

N1! S m1T

2p D 3N1/2VN2

N2! S m2T

2p D 3N2/2

Zint ,

where

Zint5E •••E )
l 51

l 5N1

d3r 1,l )
k51

k5N2

d3r 2,k

3exp~h1u111h2u221Ah1h2u12!,

and

u11[
1

N1
(

1< i , j <N1

1

ur 1,i2r 1,ju
,

u22[
1

N2
(

1< i , j <N2

1

ur 2,i2r 2,ju
,

u12[
1

AN1N2
(

1< i<N1,1< j <N2

1

ur 1,i2r 2,ju
.

B. Mean-field theory

We approximate the functionZint for a large number of
particles (N1@1 and N2@1) generalizing the approach o
Refs. @4,5# for two kinds of particles. The functionZint is
expressed as a functional integral over all configurati
with particle densitiesr1(x) andr2(x) @r1(x) stands for the
density of the particles of massm1 andr2(x) stands for the
density of the particles of massm2#.

Zint5E Dr1~ .!Dr2~ .!db1 db2 e2(F2F0)T, ~4!
01611
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F2F0

T
52N1

h1

2 E d3x d3y

ux2yu
r1~x!r1~y!

2N2

h2

2 E d3x d3y

ux2yu
r2~x!r2~y!

2AN1N2Ah1h2E d3x d3y

ux2yu
r1~x!r2~y!

1N1E d3x r1~x!ln r1~x!

1N2E d3x r2~x!ln r2~x!

1 iN1b1F12E d3x r1~x!G
1 iN2b2F12E d3x r2~x!G . ~5!

b1 andb2 are Lagrange multipliers enforcing the normaliz
tion of the densities:

E d3x r1~x!51, E d3x r2~x!51. ~6!

F stands for the free energy of the gas for the pair of den
ties (r1 ,r2), while

F052N1T lnFeV

N1
S m1T

2p D 3/2G2N2T lnFeV

N2
S m2T

2p D 3/2G
is the free energy of the perfect gas with massesm1 andm2.
One recognizes the gravitational energy in the first two lin
of Eq. ~5!, while the third line contains the entropy.

Since the free energy becomes large in the thermo
namic limit (N1 ,N2@1), the functional integralZint ~4! is
dominated by the minima of (F2F0)/T. Extremizing the
free energy with respect to the pair of densities (r1 ,r2)
yields the saddle point equations

ln r1~x!5a11h1E d3y

uy2xu
r1~y!1mh2E d3y

uy2xu
r2~y!,

~7!

ln r2~x!5a21
1

m
h1E d3y

uy2xu
r1~y!1h2E d3y

uy2xu
r2~y!,

where we used Eq.~2!. These equations define the mea
field approach. We seta15211 ib1 anda25211 ib2 and
we denote bym the ratio of masses of the two kinds o
particles,

m[
m1

m2
.

We set
2-3



h

vi

ua

e

-

o
he

t
t

a
ga

e
io

eld
n

s
a

al

ere

ble

he
s-

. In

ing

.

H. J. de VEGA AND J. SIEBERT PHYSICAL REVIEW E66, 016112 ~2002!
r1~x!5exp@F1~x!#, r2~x!5exp@F2~x!#. ~8!

Equations~7! give for the gravitational potential

U~x!52
T

m1
@F1~x!2a1#52

T

m2
@F2~x!2a2# ~9!

created by the matter densitiesr1(.) andr2(.) at the pointx.
Using Eqs.~8! and ~9!, we see that these densities obey t
Boltzmann laws,

r1~x!5ea1e2(m1 /T)U(x), r2~x!5ea2e2(m2 /T)U(x),
~10!

containing the energy of a particle in this mean-field gra
tational potential, as it must be.ea1 andea2 play the role of
normalization constants.

Applying the Laplace operator to the saddle point eq
tions ~7! we find the differential equations

DF1~x!14ph1eF1(x)14pmh2eF2(x)50,

DF2~x!14p
h1

m
eF1(x)14ph2eF2(x)50. ~11!

These equations are scale covariant. If (F1 ,F2) is a pair of
solutions of Eqs.~11!, then the pair (F1l ,F2l) defined by

F1l~x!5F1~lx!1 ln l2, F2l~x!5F2~lx!1 ln l2

~12!

is also a solution of Eq.~11!. This property is due to the scal
behavior of Newton’s potential. Using Eq.~9!, we reduce
Eqs.~11! to a single equation,

DF1~x!14ph1eF1(x)14pmh2ea22(a1 /m)eF1(x)/m50.
~13!

Using Eqs.~9! and ~10!, Eq. ~13! in dimensionless coordi
nates becomes

DU~x!5
4pG

L
@m1N1r1~x!1m2N2r2~x!#. ~14!

We show in Appendix B that this equation is the condition
hydrostatic equilibrium for a two-component fluid once t
ideal gas equation of state is postulated.

Therefore, the mean-field approximation is equivalent
the hydrostatic description in the gaseous phase provided
ideal gas equation of state is assumed in the latter appro

Notice that local equations of state other than the ideal
are often assumed in the context of self-gravitating fluids@3#.
As stressed in Ref.@4#, one needs long range forces oth
than gravitational in order to obtain a nonideal local equat
of state in thermal equilibrium.

III. SPHERICALLY SYMMETRIC CASE

For spherically symmetric configurations the mean-fi
equations become ordinary nonlinear differential equatio
We express here the various thermodynamic quantitie
terms of the solution of a single ordinary differential equ
01611
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tion. Such equation reduces to the well-known isotherm
sphere@3# if all particles have identical mass.

A. Reduction of the equation of saddle point

We consider here the spherically symmetric case wh
the mean-field equations~11! take the form

d2F1

dR2
1

2

R

dF1

dR
14ph1eF1(R)14pmh2eF2(R)50,

~15!

d2F2

dR2
1

2

R

dF2

dR
14p

h1

m
eF1(R)14ph2eF2(R)50,

where we work in a unit sphere. Therefore the radial varia
runs in the interval 0<R<Rmax, Rmax5(3/4p)1/3. Using
the scale covariance of the mean-field equations~11! by the
transformation~12!, we can set

F1~R!5x1S l
R

Rmax
D1 lnS l2

3h1
RD ,

F2~R!5x2S l
R

Rmax
D1 lnS l2

3h2
RD . ~16!

We use the new parametersh1
R5h1 /Rmax and h2

R

5h2 /Rmax in the spherically symmetric case. Hence t
mean-field equations~15! are transformed into a reduced sy
tem of the form,

x19~l!1
2

l
x18~l!1ex1(l)1mex2(l)50,

x29~l!1
2

l
x28~l!1

1

m
ex1(l)1ex2(l)50. ~17!

Let us find the boundary conditions of these equations
order to have a regular solution at origin we impose

x18~0!50, x28~0!50.

The system~17! is invariant under the transformation

l→lea, x i→x i22a, i 51,2.

Hence, we can choose

x1~0!50, ~18!

without loosing generality. As we see below, the remain
boundary condition onx2(0) is not independent fromh1 and
h2.

The densities of the two kinds of particlesr1 andr2 are
to be normalized according to Eq.~6!. We obtain using Eqs
~8! and ~16!,

h1
R5

1

lE0

l

dx x2ex1(x), h2
R5

1

lE0

l

dx x2ex2(x). ~19!
2-4
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Using the reduced mean-field equations~17!, it is straightfor-
ward to show from Eq.~19! that

h1
R1mh2

R52lx18~l!, ~20!

1

m
h1

R1h2
R52lx28~l!.

Hence

x28~l!5
1

m
x18~l!. ~21!

Recalling thatU is the gravitational potential~9! we see us-
ing Eqs.~16! that

T

m1
x18~l!5

T

m2
x28~l!

is the gravitational field at the boundary of the sphereR
5Rmax) consistently with Eq.~21!. From Eq.~21! we intro-
duce a new parameter,

C[x2~l!2
1

m
x1~l!, ~22!

independent ofl and function only of the physical param
etersh1

R andh2
R . Notice the boundary condition

x2~0!5C. ~23!

The reduced mean-field equations~17! become a single
equation with the parameterC as coefficient,

x19~l!1
2

l
x18~l!1ex1(l)1meCe(1/m)x1(l)50, ~24!

and the boundary conditions beingx1(0)50,x18(0)50.
Using Eqs.~8! and ~16! we can express the densities

the two kinds of particle in terms of the solution of Eq.~24!

r1~R!5
l2

3h1
R

ex1[l(R/Rmax)] ,

r2~R!5
l2eC

3h2
R

e(1/m)x1[l(R/Rmax)] . ~25!

Both x1(l) and x2(l) are functions ofC @see Eqs.~22!–
~24!#. Insertingx1(x) andx2(x) in Eq. ~19!, we see thath1

R

andh2
R become functions ofl andC. Then expressingl and

C as functions ofh1
R andh2

R , both densities of particles in
Eq. ~25! become functions of the radial variableR and of the
physical parametersh1

R andh2
R .

We find asymptotically from Eq.~24!,

x1~l! 5
l→`

22m ln l1O~1!
01611
for m>1. Notice that this asymptotic behavior may apply f
nonphysical values ofl where the gas is actually collapse

We now compute the thermodynamic quantities as fu
tions of the physical parametersh1

R andh2
R .

B. Free energy

Let us start by computing the free energy. Using E
~5!–~8! we find

F2F0

T
5

N1

2 S a11E d3x F1~x!eF1(x) D
1

N2

2 S a21E d3x F2~x!eF2(x) D . ~26!

We express now the Lagrange multipliersa1 anda2 as func-
tions of the physical parametersh1

R and h2
R . In the spheri-

cally symmetric case the integration over the angles in E
~7! yields

F1~R!5a114ph1S 1

RE0

R

dR8 R82eF1(R8)

1E
R

Rmax
dR8 R8eF1(R8)D

14pmh2S 1

RE0

R

dR8 R82eF2(R8)

1E
R

Rmax
dR8R8eF2(R8)D ,

F2~R!5a214p
h1

m S 1

RE0

R

dR8 R82eF1(R8)

1E
R

Rmax
dR8 R8eF1(R8)D

14ph2S 1

RE0

R

dR8 R82eF2(R8)

1E
R

Rmax
dR8 R8eF2(R8)D . ~27!

We introduce the densities for the two kinds of particles
the boundary (R5Rmax),

f 1[eF1(Rmax)5
l2

3h1
R

ex1(l), f 2[eF2(Rmax)5
l2eC

3h2
R

e
x1(l)

m ,

~28!

where we used Eqs.~8! and ~16!. Notice thatl and C are
functions ofh1

R andh2
R as explained by the end of Sec. III A

Hence,f 1 and f 2 are functions ofh1
R andh2

R .
2-5
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We find for R5Rmax the following expressions for the
Lagrange multipliers using the normalization of the densit
~6!:

a15 ln f 12h1
R2mh2

R, a25 ln f 22
1

m
h1

R2h2
R. ~29!

Inserting these expressions~29! into the free energy~26!, we
find

F2F0

T
5

N1

2
@ ln f 12h1

R2mh2
R#1

N2

2 F ln f 22
1

m
h1

R2h2
RG

1
N1

2 E d3x F1~x!eF1(x)1
N2

2 E d3x F2~x!eF2(x).

~30!

We compute the integrals in the second line in Appendix
and we find

F2F0

T
5N1@ ln f 12h1

R2mh2
R13~12 f 1!#

1N2F ln f 22
1

m
h1

R2h2
R13~12 f 2!G .

The free energy as well as the other physical quantities
functions of h1

R and h2
R . The parametersh1

R and h2
R are

linked by the relation,

h2
R5

m2
2N2

m1
2N1

h1
R.

Hence, for fixed ratiosN1 /N2 and m2 /m1, the physical
quantities depend only onh1

R or on h2
R . In that case it is

simpler to see the physical quantities as functions ofh2
R or

h1
R on a two-dimensional plot than to watch the thre

dimensional surfaces for the physical quantities as functi
of h2

R andh1
R .

We plot in Fig. 1 the free energy as a function ofh2
R for

fixed h1
R/h2

R5 16
3 . In the limit where the particles of massm1

dominate (N1@N2) the free energy becomes

F

T
5

N1@N2

N1@ ln f 12h1
R13~12 f 1!#.

We recognize here the free energy of a self-gravitating
with N1 particles of massm1 ~see Ref.@4#!.

C. Energy

We compute here the gravitational energy of the gas.
density of gravitational energy is

eP~x!5
1

2 S m1N1r1~x!

V
1

m2N2r2~x!

V DU~x!,

whereU is the gravitational potential~9!. Hence,
01611
s

re

-
s

s

e

eP~x!52
N1T

2V
eF1(x)@F1~x!2a1#

2
N2T

2V
eF2(x)@F2~x!2a2#. ~31!

Using the expressions for the Lagrange multipliers~29!, we
obtain for the gravitational energy density in the spherica
symmetric case

eP~x!5
N1T

2V
r1~R!F lnS r1~Rmax!

r1~R! D2h1
R2mh2

RG
1

N2T

2V
r2~R!F lnS r2~Rmax!

r2~R! D2
1

m
h1

R2h2
RG .

~32!

Integrating the energy density~31!, with the help of Eqs.~6!
and ~29! we obtain

EP5
N1T

2
@ ln f 12h1

R2mh2
R#1

N2T

2 F ln f 22
1

m
h1

R2h2
RG

2
N1T

2 E d3xF1~x!eF1(x)2
N2T

2 E d3xF2~x!eF2(x).

~33!

The integrals in the second line are computed in Appendi
yielding for the gravitational energy

EP53T@N1~ f 121!1N2~ f 221!#. ~34!

D. Entropy

Using the gravitational energy~34! and the free energy
~30! we obtain for the entropy

FIG. 1. Free energy versush2
R for m1 /m254, N1 /N25

1
3 , and

thereforeh1
R/h2

R5
16
3 .
2-6
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S5S01N1@6~ f 121!2 ln f 11h1
R1mh2

R#

1N2F6~ f 221!2 ln f 21
1

m
h1

R1h2
RG ,

whereS0 is the entropy of the perfect gas,

S05N1S lnF V

N1
S m1T

2p D 3/2G1
5

2D1N2S lnF V

N2
S m2T

2p D 3/2G1
5

2D .

We plot in Fig. 2 the entropyS as a function ofh2
R for

h1
R/h2

R5 16
3 .

E. Local pressure

Since the system is nonhomogeneous the local pressu
not uniform. The density of gravitational force is

F~r !52
m1N1r1~r !1m2N2r2~r !

V
grad@U~r !#,

where U~r ! is the gravitational potential~9!.
We obtain for the force at the pointr using Eqs.~8! and

~9!,

F~r !5
N1T

V
grad~eF1(r )!1

N2T

V
grad~eF2(r )!.

The link between the density of force and the pressure i

F~r !5grad@P~r !#.

Using Eq.~8!, the local pressure is given by

P~r !5
N1T

V
r1~r !1

N2T

V
r2~r !. ~35!

This is the local equation of state for the self-gravitating g
with two kinds of particles. We see that it locally coincid
with the equation of state of a perfect gas. Since the ga

FIG. 2. Entropy versush2
R for m1 /m254, N1 /N25

1
3 , and

thereforeh1
R/h2

R5
16
3 .
01611
is

s

is

inhomogeneous, the pressure acting on any finite volu
will not obey the ideal equation of state.

For a pointr at the boundary, using Eqs.~8!, ~28!, and
~35! yields the external pressure as a function ofh1

R andh2
R

as

P5
N1T

V
f 11

N2T

V
f 2 , ~36!

wheref 1 and f 2 are defined by Eq.~28!. This is the equation
of state of the gas as a whole that we plot in Fig. 3.

Combining Eqs.~34! and ~36! yields the virial theorem

PV

T
5N11N21

EP

3T
.

F. Physical behavior of the system

This self-gravitating system formed by two kinds of pa
ticles can be in two phases: gaseous and condensed. The
one corresponds toh1 and h2 between the origin and thei
collapse values. In the gaseous phase the free energy h
minimum for the pair of densities (r1 ,r2), solutions of the
saddle point equations~7!. This pair of densities is the mos
probable distribution, which become absolutely certain in
thermodynamic limit. All thermodynamic quantities follow
from this pair of densities (r1 ,r2).

In the condensed phase, (r1 ,r2) from mean-field does no
describe the particle distribution and the mean-field appro
fails to describe the condensed phase. It may be studie
Monte Carlo methods as in Ref.@4#.

When the physical parametersh1
R5h2

R50 we retrieve the
perfect gas. Whenh1

R and h2
R increase, the gas become

denser at the center of the sphere (R50) and less dense a
the boundary (R5Rmax) because of gravitational attractio
@see Figs. 6 and 7#. This effect is more acute for the heavie
particles showing that more massive particles diffuse to
denser regions.

The equation of state is depicted in Fig. 3. In the ideal g
limit, h1

R5h2
R50,PV5(N11N2)T. In the caseh1

R50 ~gas

FIG. 3. Equation of statePV/(N11N2)T versush1
R and h2

R .
We choosem1 /m254.
2-7
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H. J. de VEGA AND J. SIEBERT PHYSICAL REVIEW E66, 016112 ~2002!
of particles of massm2) and in the caseh2
R50 ~gas of par-

ticles of massm1) we recover the equation of state of th
self-gravitating gas with one kind of particle@4#.

We call critical valuesh1
RC and h2

RC the points where
PV/@(N11N2)T# exhibits a vertical slope.h1

RC andh2
RC de-

fine a critical line in the (h1
R,h2

R) plane. Namely, for each
value of N1 /N2 we have a different pair of critical point
h1

RC andh2
RC . We plot the critical line in the (h1

R,h2
R) plane

in Fig. 4.
The surface pressure has a rim on the canonical crit

line @see Fig. 3#. The projection of this rim on the (h1
R,h2

R)
plane yields the critical line plotted in Fig. 4. For a fixe
N1 /N2 we get a section of the equation of state surface
picted in Fig. 5. This section turns to have a form analog
to the equation of state for the self-gravitating gas with o
kind of particles@4#.

By analogy with the gas with one kind of particle, w
expect that the gas collapses in the condensed phase fo
ues of h1

R and h2
R slightly below h1

RC and h2
RC where the

saddle point approximation breaks down.
The physical quantities exhibit a square root Riema

sheet structure as functions ofh1
R andh2

R . The branch points

FIG. 4. The critical line in the (h1
R ,h2

R) plane. The mean-field
approximation is valid in the region below the critical line.

FIG. 5. Equation of statePV/(N11N2)T as a function ofh2
R for

m1 /m254, N1 /N25
1
3 , and thereforeh1

R/h2
R5

16
3 .
01611
al

-
s
e
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n

are on the critical line for the canonical ensemble. The low
branch@see Figs. 3 and 5 for the equation of state and F
6 and 7 for the densities# describe a phase absent in th
canonical ensemble. Such phase is realized and is stab
the microcanonical ensemble as it was the case for the
with one kind of particle@4#.

We plot in Fig. 8 the value ofh1
R1mh2

R at the critical line
as a function of the number of particlesN1 /N2. This quantity
is proportional to the total mass of the gasm1N11m2N2.
This critical parameterh1

RC1mh2
RC interpolates between th

two limiting cases (N1@N2 andN1!N2) where one kind of
particles dominate over the others. WhenN1@N2 the par-
ticles of massm1 dominate andh1

RC@h2
RC . In this limiting

case,h1
RC1mh2

RC→hRC52.518 . . . , which is the critical
value for the self-gravitating gas with one kind of partic
associated to the Jeans instability@3,4#. When N2@N1 the

FIG. 6. Density of particles of massm1 and density of particles
of massm2 at the boundary versush2

R , where the mass ratio is
m1 /m254, the number of particles ratio isN1 /N25

1
3 , and then

h1
R/h2

R5
16
3 .

FIG. 7. Density of particles of massm1 and density of particles
of mass m2 at the origin versush2

R , where the mass ratio is
m1 /m254, the number of particles ratio isN1 /N25

1
3 , and then

h1
R/h2

R5
16
3 .
2-8
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STATISTICAL MECHANICS OF THE SELF- . . . PHYSICAL REVIEW E 66, 016112 ~2002!
particles of massm2 dominate andh2
RC@h1

RC . In this lim-
iting case,h1

RC1mh2
RC→mhRC510.04 . . . for themass ra-

tio m54 corresponding to a mixture of hydrogen and h
lium.

From Eq. ~35! we see that the partial pressures of t
particles with massesm1 andm2 are given by

P1~r !5
N1T

V
eF1(r ), P2~r !5

N2T

V
eF2(r ). ~37!

The pressure contrast is defined by the ratio of the pressu
the center and the pressure at the boundaryP(0)/P(Rmax)
@3#. We find from Eqs.~18!, ~23!, ~25!, and~35!,

a[
P~0!

P~Rmax!
5

11m2eC

ex1(l)1m2eC1x1(l)/m
.

We extend this definition to each kind of particles and s
that the partial contrasts are given byP1(0)/P1(Rmax) for
the particles of massm1 and P2(0)/P2(Rmax) for the par-
ticles of massm2. We find from Eqs.~18!, ~23!, ~25!, and
~37!,

a1[
P1~0!

P1~Rmax!
5e2x1(l) and a2[

P2~0!

P2~Rmax!
5e2x1(l)/m.

~38!

We plot the contrast and the partial contrasts in Fig. 9.
see that the contrasta takes here lower values than for a g
with one kind of particles. On the contrary,a1, the partial
contrast for the heavier particles, takes higher values than
contrast for a gas with one kind of particles. This is due
the fact that the overdensity of particles in the center is m
acute for the heavier ones as noticed above.

The particle density and pressure has its maximum at
origin and its minimum at the boundary, as expected. Ho
ever, their ratio~contrast! is much larger for the heavier pa
ticles than for the lighter ones. They are related through@see
Eq. ~38!#,

a15@a2#m,

FIG. 8. Critical value of the physical parameterh1
RC1mh2

R ver-
sus ln(N1 /N2) for m1 /m254.
01611
-
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wherem5m1 /m2. Sincea2.1, whenm1.m2, we can get
a1@a2 @see Fig. 9#. In particular,a1 may be much larger
than the contrast in the gas with one kind of particles@3,4#.
In summary, this shows that the heavier particles diffuse
the denser regions.

G. Scaling law

We compute here the massM (R) inside a sphere of radiu
R (0<R<Rmax).

Using Gauss’s theorem and recalling thatU is the gravi-
tational potential~9! we find that

M ~R!52
m1N1

h1
R2F18~R!.

Using Eqs.~16! we obtain

M ~R!52
m1N1l

h1
R S R

Rmax
D 2

x18S l
R

Rmax
D .

As for the self-gravitating gas where all particles have
same mass, the massM (R) for the self-gravitating gas with
two kinds of particles follows approximately the scaling la

M ~R!'CRd.

This indicates a fractal distribution with Haussdorf dime
sion d.

d decreases withh1
R andh2

R from the valued53 for the
ideal homogeneous gas (h1

R5h2
R50) till d'1.6 in the ca-

nonical critical line. The Haussdorf dimension keeps d
creasing beyond the canonical critical line in the stable ph
of the microcanonical ensemble.

FIG. 9. Contrast P(0)/P(Rmax), partial contrast
P1(0)/P1(Rmax) for the particles of massm1 and partial contrast
P2(0)/P2(Rmax) for the particles of massm2 versush2

R , where the
mass ratio ism1 /m254, the number of particles ratio isN1 /N2

5
1
3 , and then h1

R/h2
R5

16
3 . We have at the critical point

P1(0)/P1(Rmax) . 81..P(0)/P(Rmax) . 9.9 . P2(0)/P2(Rmax)
.3.0.
2-9
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H. J. de VEGA AND J. SIEBERT PHYSICAL REVIEW E66, 016112 ~2002!
We plot in Fig. 10 the massM (R) for M (R) greater than
10% of the total mass of the gas for several values ofh1

R

choosing the ratioh1
R/h2

R to be 0.534 . . . ~Table I!. We ex-
clude the regionM (R),0.1 where the mass distribution
almost uniform. This local uniformity is simply explained b
the absence of gravitational forces at the originR50 due to
the spherical symmetry.

As shown in Fig. 11, the Haussdorf dimension at the
nonical critical line turns to be independent of the ra
h1

R/h2
R . d coincides within the numerical precision with th

Haussdorf dimensiond'1.6 at the canonical critical point o
the gas with one kind of particle@4#. This indicates that the
Haussdorf dimension at the canonical critical line is an u
versal value, independent of the gas composition~Table II!.

H. Critical behavior of the thermodynamic functions

According to the behavior of the free energy near
critical line ~see Fig. 1!, we find that the first derivatives o
the free energy~energy, pressure! are continuous, while the
second derivatives~specific heats, compressibility! are dis-
continuous. Using Eq.~34! and the form of the functionsf 1
and f 2 near the critical line~see Fig. 7!, we find that the
energy has two branchesE1 andE2 , which behave near the
critical point as

FIG. 10. lnM(R) versus ln(R/Rmax) for m1 /m254, N1 /N2

50.0334 . . . , andthen h1
R/h2

R50.534 . . . for different values of
h1

R ;h1
R50.01,h1

R50.03,h1
R50.06, and the canonical critical poin

h1
RC50.8002 . . . .

TABLE I. The fractal dimensiond and the proportionality coef-
ficient C from a fit according to M (R)'CRd for m1 /m2

54, N1 /N250.0334, and thenh1
R/h2

R50.534 and different values
of h1

R andh2
R .

h1
R h2

R d C

0.01 0.0187 2.99 1.00
0.3 0.562 2.72 1.03
0.6 1.12 2.31 1.07
h1

RC50.80 . . . h2
RC51.49 . . . 1.66 1.03
01611
-

i-

e

E65
3

2
~N11N2!T6DTAh2

RC2h2
R, ~39!

whereD is a positive constant. Deriving the energy~39! with
respect toT and recalling Eq.~2! for h2, we obtain the two
branches of the specific heat at constant volume

Cv6
5

3

2
~N11N2!6

DT

2Ah2
RC2h2

R
.

Here,E1 andCv1 stand for the gaseous stable phase in
canonical ensemble andE2 andCv2 correspond to a phas
only realized in the microcanonical ensemble@4#. We see
that E15E2 at the critical point and henceE is continuous
at criticality whileCv exhibits there an infinite discontinuity
~As is clear, negative values ofCv cannot be realized in the
canonical ensemble@6#.!

FIG. 11. lnM(R) versus ln(R/Rmax) for m1/m2 54 on the critical
canonical line for different values ofh1

R and h2
R; h1

RC

50.036 27 . . . , h2
RC52.486. . . ; h1

RC50.6682 . . . , h2
RC

51.688. . . ; h1
RC51.096 . . . h2

RC51.126. . . ; and h1
RC

51.415 . . . , h2
RC50.7978. . . . The Haussdorf dimensiond turns

to be independent of the composition of the gas taking the va
d'1.6. It coincides within the numerical accuracy with the Hau
dorf dimension for the gas with one kind of particle at the canoni
critical point @4#.

TABLE II. The fractal dimensiond and the proportionality co-
efficient C from a fit according toM (R)'CRd on the critical ca-
nonical line for different values ofh1

RC andh2
RC.

h1
RC h2

RC d C

0.03627 0.0187 1.62 1.19
0.6682 1.688 1.61 1.04
1.096 1.126 1.65 1.03
1.415 0.7978 1.62 1.04
2-10
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IV. A SELF-GRAVITATING GAS WITH n KINDS
OF PARTICLES

The generalization of the treatment given in previous s
tions to a self-gravitating gas withn kinds of particles is
straightforward. We give below the mean-field equations a
the more relevant results.

The relevant parameters of the gas are now

h i5
Gmi

2Ni

LT
, 1< i<n,

whereNi is the number of particles of massmi . We assume
thatNi /L stay fixed whileL→`,Ni→`,1< i<n. Therefore,
the ratiosNi /Nj also stay fixed forL→`,Ni→`,1< i , j
<n.

The coupled mean-field integral equations for the den
ties of particlesr i(x) (1< i<n) take the form

ln r i~x!5ai1mi (
j 51

n
h j

mj
E d3y

uy2xu
r j~y!, 1< i<n,

~40!

where Lagrange multipliersa1 ,a2 , . . . ,an enforce the nor-
malization of the densities,

E d3x r i~x!51, 1< i<n. ~41!

Equations~40! give for the gravitational potential

U~x!52
T

m1
@F1~x!2a1#52

T

m2
@F2~x!2a2#

5•••52
T

mn
@Fn~x!2an#. ~42!

Setting

r i~x!5exp@F i~x!#, 1< i<n ~43!

and applying to Eqs.~40! Laplace operator, we find the pa
tial differential equations

DF i~x!14pmi (
j 51

n
h j

mj
eF j (x)50, 1< i , j <n. ~44!

Using Eq.~42!, we reduce Eqs.~44! to a single equation

DF1~x!14pm1(
j 51

n
h j

mj
eaj 2(mj /m1)a1e(mj /m1)F1(x)50.

Equations~44! are scale covariant. IfF1 ,F2 , . . . ,Fn are
solutions of Eqs.~44!, thenF1l ,F2l , . . . ,Fnl defined by

F il~x!5F i~lx!1 ln l2, 1< i<n ~45!

are also solutions of Eq.~44!. This property is due to the
scale behavior of Newton’s potential.

In the spherically symmetric case the mean-field eq
tions ~44! become ordinary nonlinear differential equation
01611
-

d

i-

-

d2F i

dR2
1

2

R

dF i

dR
14pmi (

j 51

n
h j

mj
eF j (R)50, 1< i<n.

~46!

Using the scale covariance of the mean-field Equations~44!
by the transformation~45!, we can set

F i~R!5x i S l
R

Rmax
D1 lnS l2

3h i
RD , 1< i<n ~47!

with new parametersh i
R5h i /Rmax,1< i<n. In this way, the

mean-field Equations~46! become a reduced system of th
form

x i9~l!1
2

l
x i8~l!1mi (

j 51

n
ex j (l)

mj
50, 1< i<n. ~48!

Let us find the boundary conditions for these equations
order to have a regular solution at the origin we impose

x i8~0!50, 1< i<n.

The system~48! is invariant under the transformation

l→lea, x i→x i22a, 1< i<n.

Hence, we can choose

x1~0!50

without losing generality. As in the case of two kinds
particles, the remaining boundary condition
x2(0), . . . ,xn(0) are not independent fromh1 ,h2 , . . . ,hn .
The normalization~41! of the densities of then kinds of
particlesr1 ,r2 , . . . ,rn has to be imposed. We obtain from
Eqs.~43! and ~47!,

h i
R5

1

lE0

l

dx x2ex i (x), 1< i<n. ~49!

Using the reduced mean-field equations~48!, it is straightfor-
ward to show from Eq.~49! that

mi (
j 51

n h j
R

mj
52lx i8~l!, 1< i<n.

Hence,

x j8~l!5
mj

mi
x i8~l!, 1< i , j <n. ~50!

From Eq.~50! we introduce newl-independent parameters

Ci5x i~l!2
mi

m1
x1~l!, 2< i<n.

These new parameters are only functions
h1

R,h2
R, . . . ,hn

R . Notice that the boundary conditions can b
written as,
2-11
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x2~0!5C2 , . . . , xn~0!5Cn .

The reduced mean-field equations~48! become a single or
dinary differential equation with its coefficients dependi
on the parametersC2 , . . . ,Cn ,

x19~l!1
2

l
x18~l!1m1(

i 51

n
eCi

mi
e(mi /m1)x1(l)50, ~51!

and the boundary conditionsx1(0)50,x18(0)50. @Here,
C1[0#.

Using Eqs.~43! and ~47! we can express the densities
the n kinds of particles in terms of the solution of Eq.~51!

r i~R!5
l2eCi

3h i
R

e(mi /m1)x1[l(R/Rmax)] , 1< i<n.

The thermodynamic functions are expressed as function
the density of particles at the boundaryf 1 , f 2 , . . . ,f n de-
pending onh1

R,h2
R, . . . ,hn

R . That is,

f i5
l2eCi

3h i
R

e(mi /m1)x1(l), 1< i<n.

We provide below the expressions for the free energy,
gravitational energy, the entropy, and the equation of sta

F2F0

T
5(

i 51

n

NiF ln f i2(
j 51

n
mi

mj
h j

R13~12 f i !G ,

EP53T(
i 51

n

Ni~ f i21!, ~52!

S5S01(
i 51

n

NiF6~ f i21!2 ln f i1(
j 51

n
mi

mj
h j

RG ,

PV

T
5(

i 51

n

Ni f i , ~53!

where

F052(
i 51

n

NiT lnFeV

Ni
S miT

2p D 3/2G
is the free energy and

S05(
i 51

n

Ni S lnF V

Ni
S miT

2p D 3/2G1
5

2D
is the entropy of the perfect gas with mass
m1 ,m2 , . . . ,mn . Combining Eqs.~52! and ~53! yields the
virial theorem

PV

T
5(

i 51

n

Ni1
EP

3T
.

01611
of
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V. CONCLUSIONS

The self-gravitating gas with two kinds of particles h
analogous qualitative properties to the self-gravitating
with one kind of particle. Physical quantities like energy, fr
energy, and entropy turn to be the sum of a term proportio
to N1 plus another term proportional toN2 for largeN1 , N2,
and V, provided N1 /V1/3 and N2 /V1/3 are kept fixed. All
physical quantities are expressed as functions ofh1 andh2.
Instead of a critical line as for one kind of particles, we ha
here a critical line in the (h1 ,h2) plane for the canonica
ensemble. This line is associated to the Jeans instability.

The equation of state exhibits a rim on this critical lin
@see Fig. 3#. The thermodynamic functions exhibit a two
sheeted structure as functions ofh1

R and h2
R . The branch

points are on the critical line. The specific heat is discontin
ous and diverges there while the free energy is finite a
continuous in the branch line.

The local pressure and the local densities of particles
related by the same equation as in a perfect gas@see Sec.
III E #:

P~r !5
N1T

V
r1~r !1

N2T

V
r2~r !.

This can be explained by the dilute character of the s
gravitating gas in thermal equilibrium:N/V;N22→0 for
N→`. This dilution damps the effective interparticle inte
action and allows a free particle behavior.

The particle distribution is inhomogeneous and sca
with R with a Haussdorf dimensiond. The Haussdorf dimen-
sion d decreases for increasingh1

R andh2
R . Its value on the

critical line d51.6 . . . turns to be independent of the rat
h1

R/h2
R implying an universal behavior.d takes there the

same value than for the canonical critical point with one ki
of particle @4#.

APPENDIX A

The goal of this appendix is to compute the expressio

A5
N1

2 E d3x F1~x!eF1(x)1
N2

2 E d3x F2~x!eF2(x).

Using Eq.~9! we obtain

A5
N1

2 E d3x F1~x!FeF1(x)1
m2N2

m1N1
eF2(x)G

1
N2

2 S a22
m2

m1
a1D . ~A1!

Using Eq.~11! in the spherical symmetry the first term of E
~A1! becomes

N1

2 E d3x F1~x!S eF1(x)1
m2N2

m1N1
eF2(x)D

52
N1

2h1
E

0

Rmax
dRF1~R!

d

dRS R2
dF1

dR D . ~A2!
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Using Eqs.~16! and ~20! we obtain

F18~Rmax!52
l

Rmax
~h1

R1mh2
R!. ~A3!

Integrating by parts Eq.~A2! and using Eqs.~16! and ~A3!
we obtain

N1

2 E d3x F1~x!FeF1(x)1
m2N2

m1N1
eF2(x)G

5
N1

2 S 11
m2N2

m1N1
D ln f 11

N1

2lh1
RE0

l

dx x2@x18~x!#2.

~A4!

Using Eq.~29! the second term of Eq.~A1! yields

N2

2 S a22
m2

m1
a1D5

N2

2 S ln f 22
m2

m1
ln f 1D . ~A5!

Using Eqs.~A3! and ~A4! we expressA as

A5
N1

2
ln f 11

N2

2
ln f 21

N1

2lh1
RE0

l

dx x2@x18~x!#2.

~A6!

We compute now

I ~l!5E
0

l

dx x2@x18~x!#2.

Using Eqs.~17! and ~21!, we derive the function

B~x!5x3@ex1(x)1m2ex2(x)#

and find

B8~x!52x3x18~x!x19~x!22x2@x18~x!#2

13x2@ex1(x)1m2ex2(x)#. ~A7!

We integrateB8 between 0 andl. Integrating by parts the
first term and using Eq.~20!, we find

2
l

2
~h1

R1mh2
R!21

3

2
I ~l!.

The second term of Eq.~A7! yields

22I ~l!.

Using Eq.~19! the third term of Eq.~A7! yields
s:

ite

01611
3l~h1
R1m2h2

R!.

Hence,

I ~l!522l3@ex1(l)1m2ex2(l)#2l~h1
R1mh2

R!2

16l~h1
R1m2h2

R!.

Therefore, using Eqs.~2! and ~28! we obtain

N1

2lh1
RE0

l

dx x2@x18~x!#25N1F3~12 f 1!2
1

2
~h1

R1mh2
R!G

1N2F3~12 f 2!

2
1

2 S 1

m
h1

R1h2
RD G . ~A8!

Hence, the expression ofA @using Eqs.~A6! and ~A8!# is

A5N1F1

2
ln f 113~12 f 1!2

1

2
~h1

R1mh2
R!G

1N2F1

2
ln f 213~12 f 2!2

1

2 S 1

m
h1

R1h2
RD G .

APPENDIX B

We derive here the mean-field equations from the hyd
static equilibrium condition combined with the Poisson equ
tion for a mixture of two ideal gases.

The hydrostatic equilibrium condition@6#

¹P~qW !52@m1N1r1~qW !1m2N2r2~qW !#¹U~qW !,

whereP(qW ) stands for the pressure, combined with the eq
tion of state for the ideal gas in local form,

P~qW !5T@N1r1~qW !1N2r2~qW !#,

yields for the particle densities

r1~qW !5r1
0e2(m1 /T)U(qW ), r2~qW !5r2

0e2(m2 /T)U(qW ),

wherer1
0 andr2

0 are constants. Inserting this relation into th
Poisson equation,

¹2U~qW !54pG@m1N1r1~qW !1m2N2r2~qW !#,

yields in dimensionless coordinates, Eq.~14!.
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