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Statistical mechanics of the self-gravitating gas with two or more kinds of particles
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We study the statistical mechanics of the self-gravitating gas at thermal equilibrium with two kinds of
particles. We start from the partition function in the canonical ensemble, which we express as a functional
integral over the densities of the two kinds of particles for a large number of particles. The system is shown to
possess an infinite volume limit whei{,N,,V)— o, keepingN; /V® andN, /V*" fixed. The saddle point
approximation becomes here exact foi;(N,,V)—x. It provides a nonlinear differential equation for the
densities of each kind of particle. For the spherically symmetric case, we compute the densities as functions of
two dimensionless physical parametefg:i=GmZN;/V**T and 7,=Gm3N,/V**T (where G is Newton’s
constantm; andm, the masses of the two kinds of particles, dnthe temperatune According to the values
of n, and 5, the system can be either in a gaseous phase or in a highly condensed phase. The gaseous phase
is stable foryp, and 7, between the origin and their collapse values. We have thus generalized the well-known
isothermal sphere for two kinds of particles. The gas is inhomogeneous and th&ifRsfside a sphere of
radiusR scales withR asM (R) < RY suggesting a fractal structure. The valuelafepends in general omp, and
7, except on the critical line for the canonical ensemble in the, ) plane where it takes the universal value
d=1.6 for all values ofN;/N,. The equation of state is computed. It is found to be locally a perfect gas
equation of state. The thermodynamic functidfree energy, energy, entropgre expressed and plotted as
functions of », and 7n,. They exhibit a square root Riemann sheet with the branch points on the critical
canonical line. The behavior of the energy and the specific heat at the critical line is computed. This treatment
is further generalized to the self-gravitating gas wittypes of particles.
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I. INTRODUCTION since the average density/V goes asvV~?°—0. The rel-
evant physical parameter of the systemzissGmeN/LT
The self-gravitating gases have remarkable physical propaith Newton's constanG and the lengtl=V'3, 7 is the
erties due to the long-range nature of the gravitational forceratio of the characteristic gravitational ener@yn®N/L and
They are not homogeneous even at thermal equilibrium. Thithe kinetic energyT of the gas. Forp=0 the ideal gas is
fundamental inhomogeneity character suggested that fractadcovered. Fromy=0 till a critical value 7,=2.4349 . ..
structures can arise in a self-interacting gravitational gashe gaseous phase is stable in the canonical ensemble. When
[1,2,4]. n reaches the valuey, the gas collapses in a very dense
Self-gravitating gases are used to describe cold clouds iphase. The velocity of sound becomes imaginary at this point
the interstellar medium as well as the large scale structure dfiggering unstabilities that lead to the collapse of the[das
galaxies. In both cases, self-gravitating gases provide scalinghe saddle point approximation applies betwegn0 and
laws for the mass distribution with Haussdorf dimensionsthe point7©=2.5175% ... (associated to the Jeans insta-
compatible with the observation4,2,4). bility) where the determinant of small fluctuations is posi-
All particles have the same mass in the self-gravitatingive. At ° the determinant of small fluctuations vanishes
gases in thermal equilibrium considered till now both in theand the saddle point approximation breaks dg#inBeyond
hydrostatic approacf8] and in the statistical mechanics ap- 7 the gaseous phase is stable and the mean-field approxi-
proach[4]. We study in the present paper the statistical me-mation holds in the microcanonical ensemble. Solving the
chanics of a nonrelativistic gas with two kinds of particlessaddle point equation in the spherically symmetric case al-
with massesmn; and m,. Such a system, besides its own lows us to obtain the particle density and the thermodynamic
physical interest, has obvious astrophysical motivations sincinctions as functions of the physical paramegeAs shown
cold clouds in the galaxy are formed typically by severalin Ref.[4] the mean-field approach is equivalent to the hy-
kinds of particles, for example, hydrogen and helium. drostatic descriptioni3] provided the ideal gas equation of
Let us begin by briefly recalling some results about thestate is postulated in the latter approach. The mass distribu-
statistical mechanics of the self-gravitating gas with one kindion turns to exhibit a scaling behavior as a functiorRd#].
of particle [4]. It is a gas ofN nonrelativistic particles of We consider in this paper the self-gravitating gas with two
massm interacting through Newtonian gravity. The gas is inkinds of particles in the canonical ensemble. We recast the
a volumeV and in a thermal bath at temperatufeln the  partition function as a functional integral over the densities
usual thermodynamic limitN,V—o andN/V is fixed the  of particles of each kind when the number of particles is
gaseous phase is not stable and the system collapses in a véayge. The statistical weight for each configuration of densi-
dense phase. In the dilute linht,V— o andN/V¥3fixed the  ties turns to be the exponential of an “effective action,”
system can exist in the gaseous phase. This is a dilute limivhich is proportional to the number of particles. Therefore,
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we can use the saddle point approximation in the thermodyef the gas with one kind of particle4]. This indicates that
namic limit to evaluate the partition function. The effective the Haussdorf dimension at the canonical critical line is an
action turns to be the free energy as a function of the particleniversal value, independent of the gas compaosition.
densities. The dependence of the critical values of the parameters
When the saddle point provides a minimum of the freen; and 7, with the ratioN;/N, is computed. The thermody-
energy, the density solution of the saddle point equation imamic functiongfree energy, energy, entropy, local pressure,
the most probable. It is certainly exact for an infinite numberand pressure contrasare expressed as functions of the
of particles, since the minimized free energy exponentiallyphysical paramete#;; and 7,. The pressure contraftatio
dominates the partition function. That is, the mean-fieldbetween the pressure at the origin and the pressure at the
theory defined by the saddle point becomes exact for an inboundary turns to be lower for this mixture of particles than
finite number of particles. The mean-field approximation forfor the gas with one kind of particle.
the canonical ensemble ceases to be valid on a critical line in We compute the pressure at a pairdf the gas and show
the (n1,7,) plane(see below. Beyond this critical line the that it locally obeys the equation of state of an ideal gas,
saddle point is not a minimum of the free energy and it fails
to reproduce the physics of the system.
More precisely, we considé\; particles of massn; and N, T N,T
N, particles of mass, interacting through Newtonian grav- P(r)=—;p1(r) +—,~pa(r). ©)
ity in a volumeV and in a thermal equilibrium at temperature
T. By analogy with the self-gravitating gas with one kind of

particle, we consider the dilute thermodynamic limit: Since the gas is inhomogeneous, the pressure acting on any
noninfinitesimal volume of the gas does not obey the ideal
& and & fixed equation of state(This was already the case for a gas with
13 V13 ' all particles of equal masgt].) We plot in Figs. 3-5 the
) pressure of the gas at the surface.
The mean-field equations have a straightforward hydro-
The two relevant physical parameters here are static interpretation. We show that the mean-field equations
GmeN GmEN derived from the partition function are equivalent to the hy-
= 171 Hp= my N2 ) drostatic equilibrium equations provided that the ideal equa-
LT LT tion of state is postulated in the latter approach. We stress
] i . that we give here a microscopic derivation of the equation of
whereL=V? for a cubic geometry. Notice that E€{) im- state(3) from the partition function.
plies that the ratioN; /N, stays fixed foNy,N,,V—c. We then consider a self-gravitating gas formecdhtinds
The self-gravitating gas with two kinds of particles be- of particles with different masses. The mean-field equations
haves as a perfect gas in the extremely diluted limi=0  are derived and shown to reduce to a single nonlinear differ-
and 7,—0. When 7, and/or n, grow, the gas becomes gnja| equation.
denser till it collapses into a very dense phase whermand This paper is organized as follows, In Sec. Il we present
77 reach the collapse line for the canonical ensemble in thene statistical mechanics of the self-gravitating gas with two
(m1,72) plane. By analogy with the gas with one kind of kinds of particles in the canonical ensemble, in Sec. Ill we
particle[4] we expect the collapse line to be very close andpresent the main thermodynamic magnitudes, the equation of
below the critical line in the 4;,7%,) plane. The gaseous state and the scaling behavior of the particle distribution for
phase keeps stable in the microcanonical ensemble beyor@herical symmetry. In Sec. IV we present the generalization
this critical line. for n kinds of particles. The appendixes contain relevant

We find here that the saddle point equations are twqnathematical developments and the hydrostatic approach to
coupled nonlinear differential equations for the densities oy self-gravitating gas with two kinds of particles.

the two kinds of particlesp(x),p2(X). We succeed to re-
duce these equations to a single nonlinear differential equa-

N;,N,,V—x, keeping

tion. We SOlve.".: in the Sphgrically Symmet.ric case. We ex- II. STATISTICAL MECHANICS AND MEAN-FIELD

press the densities as functions of the physical paramsgters THEORY FOR THE SELF-GRAVITATING GAS

and n,. We thus find the isothermal sphere with two types of N _

particles. We present here the partition function for the self-

We compute the mass inside a sphere of raRigentered ~ gravitating gas witiN; particles of massn; andN; particles
at the origin and show that it scales with a Haussdorf dimenof massm, inside a finite volumev and derive the mean-
siond. d decreases with} and 75 from the valued=3 for ~ field approach to it.
the ideal homogeneous gas tilk-1.6 in the canonical criti-
cal line. The Haussdorf dimension keeps decreasing beyond _
the canonical critical line in the stable phase of the microca- A. The canonical ensemble
nonical ensembled at the canonical critical line turns to be  We study the statistical mechanics of the self-gravitating
independent of the ratig}/ 75 and coincides within the nu- gas with two kinds of particles in the canonical ensemble.
merical precision wittd~1.6 for the canonical critical point The Hamiltonian of the system is
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N; p N2 p%i Gmﬁ with
Gm% Gmym, T:_N17J WPl(X)Pl(Y)
_l<i<J<N2 |G2,i— 0z, _1sisN1,1sjsN2 |Q1,i— 0zl B d3x d3y

|X V] PZ( )p2(y)
Here,p, ; andq, ; are the momenta and the coordinates of the

particles of massn,;. p,; andq,; are the momenta and the

coordinates of the particles of mass. Therefore, the clas- —VN;N V771772f = y| Pl(X)Pz(y)

sical partition function of the gas is

I= N1 +Ny | &3 p1(X)In p1(X)
d® d 1f pP1 P1
ar
; #N; [ 6% pa0in pat)
XI e d°p,,d3qy, T
=1 (2m)3 '

+|N1b1{1_f d3Xp1(X)
It is convenient to introduce the dimensionless coordinates

variablesr, ;=Lq;, andr,;=L0,,. The momenta integrals +iN-b 1_f d3% p-(x
are computed straightforwardly. Hence the partition function 272 p2(X) .
becomes the product of the partition functions of perfect

gases with masses; andm, times the coordinate integral b_l andb, are ngrange multipliers enforcing the normaliza-
Zint tion of the densities:

®)

jd3Xp1(X)=l, fd3Xp2(X)=1. (6)

ints

VNl mlT 3Nl/2VN2 sz 3N,/2
- NT!( 2m ) N_z'( 2m )
F stands for the free energy of the gas for the pair of densi-

where
ties (pq,p2), While
s el 312 312
ZinI:f . H d3r1,| 1:[ d3r2‘k Fom—N i &Y eV/imT T|n eV/m,T
I=1 k=1 1 1 20 2 277
X + + : ;
XA 7 U1a 7alizzt 771 7aln2) is the free energy of the perfect gas with massgsandm,.

and One recognizes the gravitational energy in the first two lines

of Eq. (5), while the third line contains the entropy.
1 1 Since the free energy becomes large in the thermody-

U= - PN m namic limit (N;,N,>1), the functional integraZ;,; (4) is
Lisi=l=N P17 dominated by the minima of{—F,)/T. Extremizing the
1 1 free energy with respect to the pair of densitigs ,p»)
Upp= —— R yields the saddle point equations
N, 1=i<]=N, |r2,i_r2,j|
B d3y d3y
1 1 Inpi(x)=a+ 7, = p1(y)+ 1, = pa(y),
U= — —_—.
1z VN3N, 1=i=Nji<j<N, |f1,i—fz,j| (@)
1 d d°y
B. Mean-field theory Inpa(x)=ay+ o f Wm(yH 72 j sz(y),

We approximate the functiod,,, for a large number of
particles (N;>1 andN,>1) generalizing the approach of where we used Eq(2). These equations define the mean-
Refs.[4,5] for two kinds of particles. The functioZ;,, is  field approach. We set;=—1+ib, anda,=—1+ib, and
expressed as a functional integral over all configurationsve denote byu the ratio of masses of the two kinds of
with particle densitiep,(x) andp,(x) [p1(x) stands for the particles,
density of the particles of mass; andp,(x) stands for the
density of the particles of mass,]. My

Zint:f Dpi(.)Dpy(.)db; dby e (F-FoT, (4) We set
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p1(X)=exg ®1(X)],  pa(x)=exg P(X)]. (8)  tion. Such equation reduces to the well-known isothermal
spher€d 3] if all particles have identical mass.
Equations(7) give for the gravitational potential

T T A. Reduction of the equation of saddle point
UX) == —[®i(x)—a]=——[Pa(x)~az] (9 We consider here the spherically symmetric case where
! 2 the mean-field equatior(dl) take the form

created by the matter densitieg(.) andp,(.) at the point. 5
Using Egs.(8) and (9), we see that these densities obey the ~ d°®; 2 dd,

R @4 (R) Po(R) —
Boltzmann laws, dR2 RdR FaAmme T dmun,e e =0,
py(X)=efie~ (MMUK [, (x)— glzg= (M2 /MUK, (15
(10 2
d q)z 2 dq)z 71 ®
-z, -z 1 a®(R) D5(R) —
containing the energy of a particle in this mean-field gravi- dR2 TRAR 747 w© B Amn,eE =0,
tational potential, as it must be?t ande® play the role of
normalization constants. where we work in a unit sphere. Therefore the radial variable
Applying the Laplace operator to the saddle point equaruns in the interval &ER<R,.y, Rmax=(3/4m)Y3. Using
tions (7) we find the differential equations the scale covariance of the mean-field equatidris by the
® ® transformation(12), we can set
AD (X)+ 477,10 + 47 p,e®2¥ =0,
D,(R) ()\ R )+I N
= n —,
A<I>2(x)+477%e‘1’1(x)+477772eq’2(x)=0. (11) ! X P R 375
These equations are scale covariant.df; (®,) is a pair of _ 2
solutions of Eqs(11), then the pair ¢4, ,P,,) defined by P2(R)=x2| M Rmax +in 3775 ' (16)

D (X)=D;(AX)+INNZ, Dy (X)=D,y(AX)+In )\212) We use the new parametersi=7;/Rya and 7%

( =1,/Rhax IN the spherically symmetric case. Hence the
is also a solution of Eq1). This property is due to the scale mean-field equationd5) are transformed into a reduced sys-
behavior of Newton’s potential. Using E¢9), we reduce tem of the form,

Egs.(11) to a single equation,

2
AP (X) + 47 7,€P1 00+ A g e (Ar/m e u=, XM+ XXl(MjLeXl(A)jLMeXZ(M:O’

(13

. L . . 2 1
Using Egs.(9) and (10), Eqg. (13 in dimensionless coordi- X5(N)+ —Xé()\)+—ele+eX2m=O. (17)
nates becomes A M

417G Let us find the boundary conditions of these equations. In
AU(X)= T[mlNlpl(x)erzszz(x)]. (14 order to have a regular solution at origin we impose

We show in Appendix B that this equation is the condition of x1(0)=0, xz(0)=0.
hydrostatic equilibrium for a two-component fluid once the 1 systerm(17) is invariant under the transformation
ideal gas equation of state is postulated.

Therefore, the mean-field approximation is equivalent to A—Ne*,  xi—xi—2a, i=12.
the hydrostatic description in the gaseous phase provided the
ideal gas equation of state is assumed in the latter approacHence, we can choose

Notice that local equations of state other than the ideal gas
are often assumed in the context of self-gravitating fl{i&]s x1(0)=0, (18)
As stressed in Refl4], one needs long range forces other
than gravitational in order to obtain a nonideal local equatio
of state in thermal equilibrium.

without loosing generality. As we see below, the remaining
rlaoundary condition ory,(0) is not independent from; and

72-
The densities of the two kinds of particlps and p, are
to be normalized according to E(B). We obtain using Egs.

For spherically symmetric configurations the mean-field(8) and(16),
equations become ordinary nonlinear differential equations. 1 1
We express here the various thermodynamic quantities in n?:_f dx x2ex10), ngz_f dx x2ex2™ (19
terms of the solution of a single ordinary differential equa- Ao Ao

I1l. SPHERICALLY SYMMETRIC CASE
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Using the reduced mean-field equati@h¥), it is straightfor-
ward to show from Eq(19) that

nE+ uns=—Nxi(\), (20)
1 R R '
— 1t 7= —Axa(N).
7
Hence
! l !
X2(N)= ;Xl()\)- (21

Recalling thatU is the gravitational potentigP) we see us-
ing Eqs.(16) that

LEVPRLIN
m XM= e xe(M)

is the gravitational field at the boundary of the sphere (
=Rmay consistently with Eq(21). From Eq.(21) we intro-
duce a new parameter,

1
CEXZO\)_;Xl()\): (22

independent ok and function only of the physical param-
etersz" and 7. Notice the boundary condition

x2(0)=C. (23

The reduced mean-field equationi$7) become a single
equation with the paramet€r as coefficient,

2
Xi(N)+ XXi()\) +ex1M 4 yeCexiN =0, (24

and the boundary conditions being(0)=0,y;(0)=0.
Using Egs.(8) and (16) we can express the densities of
the two kinds of particle in terms of the solution of E&4)

)\2
pl( R) = _ReXl[)\(R/Rmax)] ,
7

A2eC
(R)=
P2 3

— U RRma)] (25

72

Both x;(\) and y,(\) are functions ofC [see Eqs(22)—
(24)]. Insertingy1(x) andy,(x) in Eq. (19), we see that}
and 7;5 become functions of andC. Then expressing and
C as functions of5 and 7%, both densities of particles in
Eq. (25 become functions of the radial variakifeand of the
physical parameterg® and 75.

We find asymptotically from Eq(24),

AN—©

Yi(\) = —2uIn\+0(1)

PHYSICAL REVIEW E 66, 016112 (2002

for u=1. Notice that this asymptotic behavior may apply for
nonphysical values of where the gas is actually collapsed.

We now compute the thermodynamic quantities as func-
tions of the physical parameters: and 75 .

B. Free energy
Let us start by computing the free energy. Using Egs.
(5)—(8) we find
F-Fo N;
T 2

a;+ J d3x 4 (x)e®1®)

N,
T

a2+J d3x ®,(x)eP2™) |, (26)

We express now the Lagrange multipliersanda, as func-
tions of the physical parametevﬁ* and 775. In the spheri-
cally symmetric case the integration over the angles in Egs.
(7) yields

1/(R ,
CDl(R):al+47T7]l<ﬁjo drR’ Rlzeqjl(R )

R

l,

AT,

"dR R’ e?1(R)

1(R 2.D,(R")
— R R’ 2
Rfod e

R
+J made'R'e‘pz(R')),
R

1 (R ,
<I)2(R)=a2+47rﬂ(—f dR’ R’2e®1(R)
#\RJo

R

)y

1 /(R ,
+4W7]2(§f0 dR’' R’2g%2(R")

maxd R R’ eCI>1(R’)

R

)y

We introduce the densities for the two kinds of particles at
the boundary R=R,a,,

"YdR R’ e®2R) | 27)

)\2
fls eq)l(Rmax) = _eXl()\)'
3%

A2eC xa(h)

e u ]
375
(28)

fZE e(DZ(Rmax) =

where we used Eq$8) and (16). Notice that\ and C are
functions of5§ and 75 as explained by the end of Sec. Il A.
Hence,f, andf, are functions ofy% and 75 .
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We find for R=R,,,, the following expressions for the 0
Lagrange multipliers using the normalization of the densities o1}

(6):

0.2 |
R R 1< & osr
ar=Infy—nr—un;, azszz_;’h—ﬂz- (29)

04

-0.5 |-

{F-Fo V(N +N,)T]

Inserting these expressio(9) into the free energy26), we

find o8|

F—F 1
— o 1

T~ lnfampr—p 51+ 5

08

1
R R
% inf,— PRONE
09|
Ny N . . . . . . .
+ ?J' d3x q)l(X)e(Dl(X)'f' ?f d3x q)z(x)e(bz(x)- o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

5

30
30 FIG. 1. Free energy versuﬁ for m{/m,=4,N /N2=% and

We compute the integrals in the second line in Appendix Athereforenf/ n5= .
and we find

F—Fy € (x)=—£e‘l’1(x)[d> (x)—ay]
T =Na[Inf1— 7= un5+3(1-11)] ] 2v R

1 —Ee‘bzm[@ (X)—ay] (3D
+N, |nf2—;77§*— P3+3(1—1,) . 2V 2 2"

The free energy as well as the other physical quantities arg/sing the expressions for the Lagrange multipli€t8), we

functions of ,7? and ,75_ The parametergy? and 7]5 are obtain for the gravitational energy density in the spherically
linked by the relation, symmetric case
maN N, T (Rmax)
R 2’2 R N1 P1{Rma R_ R
2= iNl 71 - €p(X)——2V pl(R)[| ( (R) ) 71— M7
Hence, for fixed ratiosN;/N, and m,/m;, the physical + _Nszz(R)[ (—pZ(RmaX)) _ in?_ 2.
quantities depend only oY or on 75. In that case it is 2V p2(R)
simpler to see the physical quantities as function37§f0r (32

7% on a two-dimensional plot than to watch the three-

d|menS|onaI surfaces for the physical quantities as fU”Ct'Onﬁwtegratmg the energy densit@1), with the help of Eqs(6)

of 55 and 75 . and (29) we obtain
We plot in Fig. 1 the free energy as a functiomgﬁ for

fixed 75/ 75=2L. In the limit where the particles of mass,

dominate (\I1> N,) the free energy becomes Eng[ln fl_ M’?z]+ N2T Inf,— E,ﬁ_ ,75
)72
E Ni>Np
? = Nl[ln fl_ 7]?4‘ 3(1_f1)] _ N;TJ d3xq)l(x)e‘p1(><)_ N;TJ d3xq)2(x)e‘p2(><)_
We recognize here the free energy of a self-gravitating gas (33)

with N, particles of massn; (see Ref[4]).
The integrals in the second line are computed in Appendix A

C. Energy yielding for the gravitational energy
We compute here the gravitational energy of the gas. The
density of gravitational energy is Ep=3T[Ny(f1—1)+Ny(f,—1)]. (34
1/mN X) myN X
€p(X)= > ! ifl( ) 2 3)2( ) U(x), D. Entropy
Using the gravitational energ{34) and the free energy
whereU is the gravitational potentigB). Hence, (30) we obtain for the entropy
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5

FIG. 2. Entropy versusnzR for my/m,=4, N1/N2=%, and
thereforen/ n5="12.

S=Sy+Ny[6(f;—1)—Infy+ 7T+ mny]

+N,

1
6(f2—1>—lnfz+;n§‘+ 75

whereS, is the entropy of the perfect gas,

H{E2 R C

N\ 27) |72 o 2

\Y,

So=Nqy| In +Ny| In| —
N

We plot in Fig. 2 the entropys as a function Of7]2R for

R, R_ 16
7]1/772—T-

E. Local pressure

PHYSICAL REVIEW E 66, 016112 (2002

PV/I(N+No)T]
1 r

1.5
11? g 373

FIG. 3. Equation of stat®V/(N;+N,)T versusnie and 7;;'3.
We chooseam; /m,=4.

inhomogeneous, the pressure acting on any finite volume
will not obey the ideal equation of state.

For a pointr at the boundary, using Eq83), (28), and
(35) yields the external pressure as a functiorygfand 75
as

N.T N,T
P:Tfl+Tf21 (36)

wheref; andf, are defined by Eq28). This is the equation
of state of the gas as a whole that we plot in Fig. 3.
Combining Egs(34) and(36) yields the virial theorem

PV_N N Ep
T TNt Nt ey

Since the system is nonhomogeneous the local pressure is

not uniform. The density of gravitational force is

m1N1P1(r)$m2N2P2(r) gradU(r)],

F(r)y=—

where Ur) is the gravitational potentigB).
We obtain for the force at the pointusing Eqs.(8) and
9,

N.T NoT
F(r)= % grad e®1() + % grad e®2("),

The link between the density of force and the pressure is

F(r)=grad P(r)].
Using EQ.(8), the local pressure is given by

N, T N,T

P(r)=Tp1(r)+Tp2(r). (39

F. Physical behavior of the system

This self-gravitating system formed by two kinds of par-
ticles can be in two phases: gaseous and condensed. The first
one corresponds tg; and », between the origin and their
collapse values. In the gaseous phase the free energy has a
minimum for the pair of densitiesp(,p»), solutions of the
saddle point equationd). This pair of densities is the most
probable distribution, which become absolutely certain in the
thermodynamic limit. All thermodynamic quantities follow
from this pair of densitiesd;,p,).

In the condensed phase,(,p,) from mean-field does not
describe the particle distribution and the mean-field approach
fails to describe the condensed phase. It may be studied by
Monte Carlo methods as in Rd#].

When the physical parameter§ = 75=0 we retrieve the
perfect gas. Whem_.Ff and 775 increase, the gas becomes
denser at the center of the spheR=0) and less dense at
the boundary R=R,,,,) because of gravitational attraction
[see Figs. 6 and]7This effect is more acute for the heavier
particles showing that more massive particles diffuse to the

This is the local equation of state for the self-gravitating gaglenser regions.

with two kinds of particles. We see that it locally coincides

The equation of state is depicted in Fig. 3. In the ideal gas

with the equation of state of a perfect gas. Since the gas mit, 7%= 75=0PV=(N;+N,)T. In the casenF=0 (gas

016112-7
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FIG. 4. The critical line in the 4%, 7%) plane. The mean-field N2

approximation is valid in the region below the critical line. FIG. 6. Density of particles of mase, and density of particles

of massm, at the boundary versusy, where the mass ratio is

m;/m,=4, the number of particles ratio i§;/N,=3%, and then
16

UNE

of particles of massn,) and in the casey§=0 (gas of par-
ticles of massm;) we recover the equation of state of the
self-gravitating gas with one kind of particld].

We call critical valuesn?¢ and 75 the points where

PV/[(N, +N,)T] exhibits a vertical slopeﬁc and n?c de- are on the critical line for the canonical ensemble. The lower

. . S R R branch[see Figs. 3 and 5 for the equation of state and Figs.
fine a critical line in the (71’7.72) plane.'NameI'y', for egch 6 and 7 for the densiti¢sdescribe a phase absent in the
value ofN; /N, we have a different pair of critical points  ¢anonjcal ensemble. Such phase is realized and is stable in
71_andn; . We plot the critical line in the {1, 77) plane  he microcanonical ensemble as it was the case for the gas
in Fig. 4. _ _ __ with one kind of particlg4].

The surface pressure has a rim on the canonical critical \ye piot in Fig. 8 the value obR-+ u 75 at the critical line
. . . . . . R .
line [see Fig. 3. The projection of this rim on theyf, 75) as a function of the number of particlsls /N,. This quantity

plane yields the critical line plotted in Fig. 4. For a fixed jg proportional to the total mass of the gagN;+m,N,.
N;/N; we get a section of the equation of state surface dethis critical RCL 4 7RC interpolates between the

) R . X paramete;
picted in F|g: 5. This section turns to haye a form ana}logou%’vo limiting cases K;> N, andN,<N.,) where one kind of
to the equation of state for the self-gravitating gas with on

kind of particles[4] eparticles dominate over the others. Whidp>N, the par-
. : ; RCs. RC i limiti
By analogy with the gas with one kind of particle, we ticles of masan; dominate andy; > 7, ~. In this limiting

RC RC RC_ H ; 4
expect that the gas collapses in the condensed phase for vgﬁlse’ 7]{1 Jtrh'“ T2 hf” 't_t2.518 o .\;\r’]h'Ch |sk.tlgle ?”“C‘?I |
o sty o e e i o e S g i i one i of i
saddle point approximation breaks down. B4l 27

The physical quantities exhibit a square root Riemann
sheet structure as functions gf and 75 . The branch points

100

90
1

80 -

095 -
70 -

09 60 -

50 [
0.85

P(0), PL0)

40+
08 |
30 b

PVAI(N+N2)T)]

075 - 20|

0.7 - ] 10k

0.85 4 0 0.05 0.1 0.15

0.6

0 o.los of1 o.l15 052 o.lzs ofa o,las 0.4 . . i .
R FIG. 7. Density of particles of mass,; and density of particles

n
: of massm, at the origin versusng‘, where the mass ratio is
FIG. 5. Equation of stateV/(N;+ N,)T as a function of;5 for m, /m,=4, the number of particles ratio i¥; /N,=3, and then

my /m,=4,N;/N,= %, and thereforep®/ nR= 22, 7 aR=2.
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FIG. 8. Critical value of the physical parametgf“+ u 75 ver- 0 005 01 015 02 025 03 035 04
sus In{N; /N,) for my /my,=4.

. . RC.  RC L FIG. 9. Contrast P(0)/P(Rya0, partial contrast
particles of massn, dominate andp; > #y . In this lim-  p_ (0y/p,(R,,,,) for the particles of mase, and partial contrast
iting case,nf “+ un5 “—unRC=10.04 . .. for themass ra-  P,(0)/P,(Rna,) for the particles of mass, versusz%, where the
tio =4 corresponding to a mixture of hydrogen and he-mass ratio ism,/m,=4, the number of particles ratio i, /N,

lium. =%, and then z%/753=%. We have at the critical point
From Eq. (35 we see that the partial pressures of theP;(0)/P1(Rma) = 81>P(0)/P(Rma) = 9.9> P»(0)/P2(Rmay
particles with masses; andm, are given by =3.0.
PL(r) = N.T e p(r)— N, T a®2(1). 37) where u=m,/m,. Sincea,>1, whenm;>m,, we can get

a1>a, [see Fig. 9. In particular,«; may be much larger
than the contrast in the gas with one kind of partidleég].
The pressure contrast is defined by the ratio of the pressure bt summary, this shows that the heavier particles diffuse to
the center and the pressure at the bound®(9)/P(Rm 4y the denser regions.
[3]. We find from Eqgs(18), (23), (25), and(35),

G. Scaling law

2.C
P0) = Ltute ) We compute here the mabi(R) inside a sphere of radius
P(Rnax)  ex1® 4 2l xiM/n R (0<R<R 4.
Using Gauss’s theorem and recalling thais the gravi-
We extend this definition to each kind of particles and saytational potential9) we find that
that the partial contrasts are given By (0)/P;(Rya0 for

a=

the particles of mase; and P,(0)/P»(Ry4,) for the par- M(R)= — mlNleq),(R)
ticles of massm,. We find from Eqgs.(18), (23), (25), and 7 1
(37),
Using Eqgs.(16) we obtain
alE Lo)zele()\) and a25ﬂ267X1(A)/M. 9
Pl(Rmax) PZ(Rmax) M(R)=— mlNl)\( R ) /()\ R )
(38) 22 R Y R

We plot the contrast and the partial contrasts in Fig. 9. We o )
see that the contrast takes here lower values than for a gasAS for the self-gravitating gas where all particles have the
with one kind of particles. On the contrarg,, the partial Same mass, the mabs(R) for the self-gravitating gas with
contrast for the heavier particles, takes higher values than tH¥o kinds of particles follows approximately the scaling law
contrast for a gas with one kind of particles. This is due to
the fact that the overdensity of particles in the center is more M(R)~CR.
acute for the heavier ones as noticed above.

The particle density and pressure has its maximum at thé&his indicates a fractal distribution with Haussdorf dimen-
origin and its minimum at the boundary, as expected. Howsiond.
ever, their ratiocontrast is much larger for the heavier par-  d decreases withy§ and 75 from the valued=3 for the
ticles than for the lighter ones. They are related throiggle  ideal homogeneous gasﬁ: n§=O) till d~1.6 in the ca-

Eq. (39)], nonical critical line. The Haussdorf dimension keeps de-
creasing beyond the canonical critical line in the stable phase
ar=[ay]*, of the microcanonical ensemble.
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FIG. 10. InM(R) versus InR/R,,) for m;/m,=4,N;/N, FIG. 11. InM(R) versus InR/R,5,) for m;/m, =4 on the critical
=0.033 ..., andthen 75/ »3=0.534 . .. for diflerent values of ~canonical line for different values ofsY and 75 #{°
7R 7R=0.01,77=0.03,77=0.06, and the canonical critical point =0.0362 ...,  75°=2.486...; n{°=0.66&8..., 75"
7R°=0.80@. .. . =1.688...; 7f°=1.0%... 25°=1.126...; and 7{°

=1.415...,75°=0.7978. ... The Haussdorf dimensiod turns

PR— to be independent of the composition of the gas taking the value
We plotin Fig. 10 the massi(R) for M(R) greater than d~1.6. It coincides within the numerical accuracy with the Hauss-

10% (_)f the total_ mRassR of the gas for several values;?)f dorf dimension for the gas with one kind of particle at the canonical

choosing the ratiay;/ 7, to be 0.53 ... (Table ). We ex-  itical point[4].

clude the regiorM (R)<0.1 where the mass distribution is

almost uniform. This local uniformity is simply explained by 3

the absence of gravitational forces at the oriBin 0 due to _ R R

the spherical symmetry. E.=5(N1+Nx)TEDTV 7z ™= 72, (39
As shown in Fig. 11, the Haussdorf dimension at the ca-

nonical critical line turns to be independent of the ratio

75/ 75 . d coincides within the numerical precision with the whereD is a positive constant. Deriving the ener@@) with

Haussdorf dimensiod~ 1.6 at the canonical critical point of respect toT and recalling Eq(2) for 7,, we obtain the two

the gas with one kind of particlgt]. This indicates that the branches of the specific heat at constant volume

Haussdorf dimension at the canonical critical line is an uni-

versal value, independent of the gas composititable II).

DT

2

. . _ : G, =§(N1+N2)i
H. Critical behavior of the thermodynamic functions = 2

According to the behavior of the free energy near the
critical line (see Fig. 1, we find that the first derivatives of
the free energyenergy, pressuyeare continuous, while the Here,E, andC, ., stand for the gaseous stable phase in the
second derivativegspecific heats, compressibilitare dis- ~canonical ensemble ariel. andC, - correspond to a phase
continuous. Using Eq(34) and the form of the functions, ~ only realized in the microcanonical ensemipt. We see
and f, near the critical line(see Fig. 7, we find that the thatE,=E_ at the critical point and hendg is continuous

energy has two branch&, andE_, which behave near the at criticality while C, exhibits there an infinite discontinuity.
critical point as (As is clear, negative values @f, cannot be realized in the

canonical ensemblgg].)
TABLE I. The fractal dimensiom and the proportionality coef-

ficient ¢ from a fit according to M(R)~CRY for m;/m, TABLE Il. The fractal dimensiord and the proportionality co-
=4,N;/N,=0.0334, and them; ¥/ »5=0.534 and different values efficient C from a fit according toM (R)~CR? on the critical ca-
of %% and 5. nonical line for different values of® and 75°.
N A d c U 75° d c

0.01 0.0187 2.99 1.00 0.03627 0.0187 1.62 1.19
0.3 0.562 2.72 1.03 0.6682 1.688 1.61 1.04
0.6 1.12 231 1.07 1.096 1.126 1.65 1.03
77¢=0.80... PRC=1.49. .. 1.66 1.03 1.415 0.7978 1.62 1.04
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IV. A SELF-GRAVITATING GAS WITH
OF PARTICLES

n KINDS

The generalization of the treatment given in previous sec-

tions to a self-gravitating gas with kinds of particles is

PHYSICAL REVIEW E 66, 016112 (2002

d?d,
dR?

2 do,

+—_—'4 Qj(R) — <i=n.
R dR I<i=n

wmz

(46)

straightforward. We give below the mean-field equations andJsing the scale covariance of the mean-field Equatidds

the more relevant results.
The relevant parameters of the gas are now

Gm|2N|
LT

<i=n,

ni=
whereN; is the number of particles of masg. We assume

thatN; /L stay fixed whileL —o0,N;—,1<i=<n. Therefore,

the ratiosN;/N; also stay fixed forL—o,Nj—c,1<i,j
=n.

The coupled mean-field integral equations for the densi-

ties of particlesp;(x) (1<i<n) take the form

l<i=n,
(40)

U
Inpi(x)= a|+m2 Jf|y X|PJ

where Lagrange multipliera;,a,, ...
malization of the densities,

,a, enforce the nor-

f d3x pi(x)=1, 1<i=n. (41)
Equations(40) give for the gravitational potential
T T
U(x)=— m_l[q)l(x)_al]: - E[Cbz(x)_az]
T
:"':_m_n[q)n(x)_an]- (42
Setting
pi(x)=exd ®i(x)], 1<i=n (43

and applying to Eqs(40) Laplace operator, we find the par-
tial differential equations

n
AD () +a7m S HeP0=g 1<ij<n. (44)
= m;

Using Eq.(42), we reduce Eqs44) to a single equation

e j— (mj/my)ag g(m; /mq) @4 (x) —
J

Ad)l(x)+47rm12

Equationg44) are scale covariant. b, ®,, ..., o, are
solutions of Eqs(44), then® 4, ,®,, , ..., P, defined by

O (X)=P;(AX)+In\%, 1<i=<n (45)
are also solutions of Eq44). This property is due to the

scale behavior of Newton’s potential.

In the spherically symmetric case the mean-field equa471,772, ce

tions (44) become ordinary nonlinear differential equations

by the transformatiorni45), we can set

R
AN——|+In

Rmax

Di(R)=xi

2
—_— sis<
R|" 1<i=n
I

with new parameterg:= 7, /Rmax, 1<i<n. In this way, the
mean-field Equation$46) become a reduced system of the
form

2 noexi®)
X))+ = x () +m 2 =0, 1<i=n.
N & m

(48)
Let us find the boundary conditions for these equations. In
order to have a regular solution at the origin we impose
xi(0)=0, 1<i=n.
The system48) is invariant under the transformation
A—\e9,

Xi—Xi—2a, 1<i=n.

Hence, we can choose

x1(0)=0
without losing generality. As in the case of two kinds of
particles, the remaining boundary conditions
x2(0), . ..,xn(0) are not independent from, , 75, . . ., 7,

The normalization(41) of the densities of then kinds of
particlespq,p», ... ,pn has to be imposed. We obtain from
Egs.(43) and (47),

1(r
nlzxfodxxze’(i(x), 1<i<n. (49)

Using the reduced mean-field equatida8), it is straightfor-
ward to show from Eq(49) that

n
miEl 1<i=n.
=

N
Hence,

m.
Xj()=x((\), 1=i,j=n. (50
|

From Eq.(50) we introduce new\-independent parameters,

m- .
Ci=xi(A)— #1)(1()\), 2<i<n.

These new parameters are only functions of
7. Notice that the boundary conditions can be

written as,

016112-11
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X2(0)=Csy, ..., xn(0)=C,.

The reduced mean-field equatio@) become a single or-
dinary differential equation with its coefficients depending
on the parameter§,, ... ,C,,

n

2 Ci
X1(N)+ Xxi(>x)+m1i§1

——e(Mi/m)x1(\) = 0,
m;

(51)

and the boundary conditiong,(0)=0,x1(0)=0. [Here,
C,=0].

Using Eqgs.(43) and (47) we can express the densities of
the n kinds of particles in terms of the solution of EG.1)

2,Ci
ATeT s my) a ARy
375

=

=

=

=

pi(R) 1=i

n.
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V. CONCLUSIONS

The self-gravitating gas with two kinds of particles has
analogous qualitative properties to the self-gravitating gas
with one kind of particle. Physical quantities like energy, free
energy, and entropy turn to be the sum of a term proportional
to N; plus another term proportional ¥, for largeN;, N,
and V, provided N;/V¥® and N,/V'? are kept fixed. All
physical quantities are expressed as functiong,0and 7.
Instead of a critical line as for one kind of particles, we have
here a critical line in the #4,,%,) plane for the canonical
ensemble. This line is associated to the Jeans instability.

The equation of state exhibits a rim on this critical line
[see Fig. 3. The thermodynamic functions exhibit a two-
sheeted structure as functions g and 75. The branch
points are on the critical line. The specific heat is discontinu-
ous and diverges there while the free energy is finite and
continuous in the branch line.

The thermodynamic functions are expressed as functions of The local pressure and the local densities of particles are

the density of particles at the boundafy,f,, ..
pending onz%, 7%, ... ,»R. That is,

.f, de-

\2eCi

f.:
U

elm; /ml)Xl()\)’

1<i<n.

related by the same equation as in a perfect[gag Sec.
HNEej:

N, T

N,T
P(f)ZTpl(r)+TPz(f)-

This can be explained by the dilute character of the self-

We provide below the expressions for the free energy, th%ravitating gas in thermal equilibriuni/V~N~2—-0 for
gravitational energy, the entropy, and the equation of state.N_, . This dilution damps the effective interparticle inter-

F-Fp < " m
_0_ Iinf—> 1R _f
T =2 NifInf, ,2‘1 m, 730 f,)},
n
Ep=3T>, Ni(fi—1), (52)
i=1
n n m:
S=S+>, Ni[e(fi—l)—|nfi+2 — 77,
i=1 j=1 M
Ppv
—=2> Nifj, (53
T =
where
n 3/2
eV/imT
Fo——;NiTln W.(2_> }

is the free energy and

v
N;

5

2

miT

so=i:21 Ni(ln >

312
=
is the entropy of the perfect gas with masses

m;,Mm,, ...,m,. Combining Eqs(52) and (53) yields the
virial theorem

Pv_i N+Ep
T & 3T

action and allows a free particle behavior.

The particle distribution is inhomogeneous and scales
with R with a Haussdorf dimensioth. The Haussdorf dimen-
siond decreases for increasing? and 75 . Its value on the
critical line d=1.6 ... turns to be independent of the ratio
7% 7% implying an universal behaviod takes there the
same value than for the canonical critical point with one kind
of particle[4].

APPENDIX A

The goal of this appendix is to compute the expression

N N
A 71 f d3x Dy (x) P19 + 72 f d3x P, (x) P2,

Using Eq.(9) we obtain

N1J myN,
A=—| d®*d(x)|e?1¥+ e?2()
2 l( ) m]_N]_
N, m;
+ 7 aoy— Eal . (Al)

Using Eq.(11) in the spherical symmetry the first term of Eq.
(A1) becomes

Nif s @ NN
= 1(%)
2 f d x(I)l(x)(e +

eCDZ(X))
11N1

d

dR

N, (R

= de;bl
2mJo

dR

"YdR®,(R)

) . (A2)
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Using Egs.(16) and(20) we obtain

(75 + nn3). (A3)

q)i(Rmax) ==

Rmax

Integrating by parts Eq(A2) and using Eqgs(16) and (A3)
we obtain

o100 4 M2N2 a0
MmN

N
%J d3x D 4(x)

Ny

2

myN,

+
! MmN

N, A , )
)In fi+ o F ﬂ?jo dx X x1(x)]12.

(A4)
Using Eq.(29) the second term of EAL) yields
N>

2

my
a,— —a
27 m, &

_Nef M A5
=7 |Infamrinty ). (A5)

Using Egs.(A3) and(A4) we expresA as

N N A
N1 2 1 ’ 2
A—?Infl—i- 7Inf2+ ?fo dXXZ[Xl(X)] .

2\7n
(A6)

We compute now

A
'(”:Jo dx % x1(x)]%

Using Eqgs.(17) and(21), we derive the function
B(x)=x3[eX1) + 4 2ex2()]
and find
B'(x)=—xx1(x)x1(x) = 2x’[ x1(x)]?
+3x eX1¥ 4 y2ex2], (A7)

We integrateB’ between 0 and.. Integrating by parts the

first term and using Eq20), we find

- %(71?+M71§)2+ ;l(k)-
The second term of EqA7) yields
—2I(\).
Using Eq.(19) the third term of Eq(A7) yields

PHYSICAL REVIEW E 66, 016112 (2002
IN(S+ 12 n5).
Hence,
1) = =20+ p2e M=\ (1 + un})®
+BN( 75+ u2n5).

Therefore, using Eq$2) and (28) we obtain

N fhdx X[ x1(x)]?= N1[3(1— f)— 1(7]?"’,‘“]5)
2n 73 lo 2

+Ny 3(1—f,)

1/1

—5(;7/?+ 73| | (A8)

Hence, the expression &f [using Eqs.(A6) and (A8)] is

A= Nl

1 1 R R
Eln f1+3(1—-1fy)— 5(771"',4“72)

+N,

1 11 ., .
E'nf2+3(1_f2)_§ ;7714'772

APPENDIX B

We derive here the mean-field equations from the hydro-
static equilibrium condition combined with the Poisson equa-
tion for a mixture of two ideal gases.

The hydrostatic equilibrium conditiof6]

VP(q)=—[m;N1p1(q)+m,Nppo(q)]VU(Q),

whereP(ﬁ) stands for the pressure, combined with the equa-
tion of state for the ideal gas in local form,

P(d)=T[N1p1(d) +Nop2(0)],
yields for the particle densities
pi(@)=pie” MDV@,  py(g)=pge” (M/DVD,

wherep? andp$ are constants. Inserting this relation into the
Poisson equation,

V2U(q)=47G[m;N;p1(q) +myNopa()],

yields in dimensionless coordinates, Etd4).
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